New TX font package

Michael Sharpe

March 2, 2020

1 Introduction

This package is meant to be a replacement for Young Ryu’s txfonts. It is a complete text (newtext) and math (newtexmath) package with roman text font provided by a Times clone, sans serif based on a Helvetica clone, typewriter faces, plus math symbol fonts whose math italic letters are from a Times Italic clone. As of version 1.4, newtext no longer depends on txfonts but is based on the richer source TeXGyre Termes, but newtexmath continues to use the txfonts math glyphs with many metric adjustments and some wholesale modifications.

Very Important: The math package changed substantially as of version 1.5, changing a number of glyphs, adding an option to reduce the sizes of large operators, and changing the integral signs to a choice of upright and slanted forms, each available in twelve variants. The new options are upint (upright integrals) and smallerops (smaller large operators.) Some previously available options may no longer have any effect. The changes are described in detail in the section on math mode options. A summary of the changes in version 1.5 is given in Appendix 1.

Version 1.60 likewise has many additions and changes that are summarized in Appendix 2. Most important is that newtx is now able to output a PDF/A-1b compliant pdf using pdflatex.

This math package works, after possibly replacing its math Roman and Greek letters, with fonts other than Times that are intermediate in weight between Computer Modern and Times. The free font Linux Libertine is one particular target—it is of nearly the same x-height as Computer Modern, but, not being a modern font, does not have a high contrast ratio, and so appears denser than Computer Modern but not as much so as Times. It is meant as a replacement for Times, but differs from it in many characteristics, more similar to MinionPro than Times, and provides a better range of variants than Times—three weights (regular, semi-bold and bold) rather than just two, and has expert features in all weights: old-style figures, more extensive and more interesting ligatures, and small caps. In my opinion, material typeset in Linux Libertine looks better than the corresponding material typeset in Times. This seems especially true on the screen. As of version 1.0, the package also offers support for MinionPro as a math font, but with limitations described in detail below. More recently, an option to provide math support for the garamondx text font package was added. Version 1.55 adds support for the SticksToo text fonts, a reworking of the STIX2 text fonts.

The newtx package differs from txfonts in the following ways:

- the new package is split into separate text and math packages that do not need to be used in conjunction;
- both text and math packages offer options not present in the original package, described below, including the option to use libertine Latin and Greek letters to replace Times, as well as a similar option minion;
• wide accent glyphs have been corrected (they should have zero depth) so that they no longer collide with the underlying glyph;

• for those who do not like the integral in txfonts, an emboldened version of the Computer Modern integral is made available, matching the weight of the txfonts symbols;

• an upright partial derivative symbol has been added, named \uppartial;

• there is now an option to get braces more pleasing to older eyes;

• macros have been added to bring the calls to Greek symbols more into conformity with psnfss and Mathtime Pro 2;

• problems using ams macro packages before txfonts are settled;

• \coloneq \eqcolon now point to the correct glyphs;

• The problem with the ogonek accent and tabular environments (bad definition of \k) is fixed;

• The default encoding for newtxtext is now T1, but support is offered also for OT1 and LY1. As some add-on packages are available only in T1, that seems the best current choice.

• Sans serif is by default taken from TeXGyreHeros, and by default at 90% of the scale factor (set by scaled, default value 1). The option helvratio=.98 will change that to 98%.

• \varkappa \varkappa has been moved from AMSb to lettersA, and is now accompanied by an upright form \upvarkappa \kappa which behaves as it should when using the frenchmath option.

2 Text mode options

Beginning with version 1.4, the text font component of newtx is no longer dependent on the txfonts, and is constructed entirely from TeXGyre Termes and some modifications thereof.

The text mode environment invoked by

\usepackage{newtxtext}

has several options, a number new to version 1.4: you may write

\usepackage[scaled=.93]{newtxtext}

to load the roman and typewriter text fonts at 93% of normal size, and the sans serif (Helvetica clone) at scale 0.9 * 0.93. This is not of much utility if the package is used with the math package newtxmath to which it is already matched, but may be with other math packages. The options

\usepackage[scaled=.95,helvratio=.96]{newtxtext}

load roman and typewriter text fonts at 95% of normal size, and the sans serif (Helvetica clone) at scale 0.95 * 0.96.

The option osf instructs the text fonts to use old-style figures 1234567890 rather than the default lining figures 1234567890. As of version 1.23, newtxtext loads initially with lining figures so the math package uses lining figures in math mode. The option osf changes the default to old-style figures in text at the very end of the preamble, forcing the use of old-style figures in text, but not math. In earlier versions, it was necessary to run \useosf after loading newtxmath. This is no longer required.

If you use the babel package, you should load it before newtxtext—for example:
\usepackage[babel options]{babel}
\usepackage[osf]{newtxtext}

More generally, the pattern of the preamble should be:

<encoding options>
[optional] \usepackage[substitutefont] % so you can change babel's fonts
[optional] \usepackage[babel options]{babel}
\usepackage[p,osf]{newtxtext}% osf in text, lining figures in math
[optional] redefine the plain theorem style if necessary
<other font loading commands>
\usepackage{newtxmath}
\substitutefont commands

As an example of a theoremstyle definition,

\usepackage[theoremfont]{newtxtext}
%%% modify the default definition of plain to reduce spacing above and below
\newtheoremstyle{plain}
{0pt} % ABOVESPACE, extra space above
{0pt} % BELOWSPACE, extra space below
{%\slshape} % BODYFONT, italic with upright figures and punctuation
{} % INDENT (empty value is the same as 0pt)
{%\bfseries} % HEADFONT
{.} % HEADPUNCT
{5pt plus 1pt minus 1pt} % HEADSPACE
{} % CUSTOM-HEAD-SPEC\newtheorem{thm}{Theorem}[section]

Here is a specific example following this pattern, but without theoremfont.

\usepackage[LGR,T1]{fontenc} % spell out all text encodings used
\usepackage[utf8]{inputenc} %
\usepackage[substitutefont] % so we can use fonts other than those in babel
\usepackage[greek.polutoniko,english]{babel}
\usepackage[largesc,osf]{newtxtext}%
\usepackage[varqu,varl]{zi4}% inconsolata
\usepackage[cabin]% sans serif
\usepackage[vvarbb]{newtxmath}
\useosf % use oldstyle figures except in math
\substitutefont{LGR}\{\rmdefault}{Tempora} % use Tempora to render Greek text

As of version 1.4, there are four normal figure styles: tabular lining, tabular oldstyle, proportional lining and proportional oldstyle, the default figure alignment being tabular. To make proportional the default, use the option p or proportional.

Option defaultsups (same effect as defaultsups=true) forces the package to use the L\TeX default footnote markers (or, at least, those in force when the package is loaded) instead of those preferred by the package—Times Roman superior figures instead of spindly ordinary Times lining figures reduced to about 70%. (Footnote markers in minipages use the default lowercase italic alphabetic characters, unless otherwise specified by redefining \thempfootnote.) For better control over position and size of footnote markers, use the supers package after loading newtxtext. The \textsf{font} switch and its related \textsf{tsu} macro
know not only about figures, but also the lower case letters, including egrave, so that traditional French expressions like l\`e
tere may be typeset correctly.

As of version 1.625, there are now denominator figures (aligned to the text baseline) which may be called either with \{\infigures 12345\} or \textin{6789}. Currently, these are available only in regular weight, upright shape. There is a new macro \textfrac that builds a fraction from superior figures and denominator figures: e.g., \textlf{5}, \textfrac{7}{80} renders as 5\%/.

Option largesc changes the small cap glyphs from the default petite caps defined in TeXGyre Termes (same size as in txfonts) to a larger size that, in upright shapes, is metrically compatible with Adobe’s small caps. These are about 10% larger than petite caps. For a comparison, SMALL CAPS, PETITE CAPS, and ITALIC SMALL CAPS, ITALIC PETITE CAPS.

Option adobesc is only for those who own licenses for Adobe Times Small Caps and install them into the ptmsc packagedownloaded from ctan. This option loads largesc and substitutes the Adobe glyphs, where available, including their larger Regular and Bold tabular oldstyle figures.

The theoremfont option changes the default font used for the plain theoremstyle of amsthm, keeping italic text but substituting upright figures and punctuation, and, provided you have loaded amsthm before newtxtext, it will redefine the plain theoremstyle. For example, with this option, you get theorem statements like this:

\textbf{Theorem 2.1.} This is Theorem Italic: text numbers are upright—12345; punctuation is in many cases upright (also, parens, braces {} and brackets []). What about question marks and exclamations? Also upright! [These fit better with math mode punctuation and figures, like: for all $x \in [0, 1]$, let $f(x) := \exp(ax)$].

Compare this to traditional plain theoremstyle with the same text:

\textbf{Theorem 2.1.} This is Theorem Italic: text numbers are upright—12345; punctuation is in many cases upright (also, parens, braces {} and brackets []). What about question marks and exclamations? Also upright! [These fit better with math mode punctuation and figures, like: for all $x \in [0, 1]$, let $f(x) := \exp(ax)$].

If you are using another theorem package (e.g., ntheorem, theorem) you will have to add your own descriptors as specified in its documentation and set the body font to \slshape.

3 Spacing issues

This new version of newtxtext has spacing that is a little different, in its default state, from that of the old newtxtext. In small part this is due to the finer kerning of TeXGyre Termes, but mostly because the three parameters that govern inter-word spacing are not the same.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>txfonts</th>
<th>Termes</th>
</tr>
</thead>
<tbody>
<tr>
<td>fontdimen2 (space)</td>
<td>.25em</td>
<td>.25em</td>
</tr>
<tr>
<td>fontdimen3 (stretch)</td>
<td>.15em</td>
<td>.2em</td>
</tr>
<tr>
<td>fontdimen4 (shrink)</td>
<td>.06em</td>
<td>.1em</td>
</tr>
</tbody>
</table>

That is, Termes has the same normal spacing as txfonts but its spacing is more flexible in terms of both stretch and shrink. More frequently than not, a paragraph built with Termes will occupy more space than the same built with txfonts. For this reason, the package offers some ways to change the spacing parameters. This may be important if you are trying to imitate the pagination of a document built using txfonts.

Option tighter sets the three fontdimen values to those of txfonts.
Option looser sets the three fontdimen values to \{.3em,.2em,.1em\} respectively.

If you want full control, the options spacing, stretch, shrink allow you to modify one or more of the above fontdimens. For example,
\usepackage[stretch=.15em,shrink=.095em]{newtxtext}

4 Math mode options

The package invoked by
\usepackage{newtxmath}
loads the math part of the txfonts (with revised metrics and additional glyphs) and should be loaded after the text font and its encoding have been specified, as it uses the text font settings to define how operators, numbers, math accents, \textit, \textbf etc. are rendered. You should also load a Typewriter font so as not to generate mysterious error messages about metafont trying to generate ectt10. The package offers a number of options.

• upint (new as of version 1.5) selects upright integrals—the default shape is slanted. Each shape/size of integral takes one of twelve form, illustrated below in the case of display size slanted integrals.

\int \oint \iint \iiint \iiiint \oiint
\oiiint \varointclockwise \ointctrclockwise \fint \sumint \sqint

The three sizes of the upright integrals look like:

<table>
<thead>
<tr>
<th>Glyph</th>
<th>Command</th>
</tr>
</thead>
<tbody>
<tr>
<td>∫</td>
<td>\smallint[up]</td>
</tr>
<tr>
<td></td>
<td>\int[up]</td>
</tr>
<tr>
<td></td>
<td>\displaystyle{\int[up]}</td>
</tr>
</tbody>
</table>

Note that the suffix up is not required unless the document’s integral style is slanted. You may find the \smallint is useful for inline math mode when it is important not to change the line spacing.

• smallerops (new as of version 1.5) causes big operators other than integrals to render up to 20% less tall, so that displayed formulas may occupy less vertical space. For example, in the following display, the first operator is the usual \sum, the second is what you would get with smallerops, the third is \sum and the fourth is \smallsum, the latter being used mainly with inline math.

\[\sum \sum \sum \sum \]

Similarly, there are \smallprod and \smallcoprod which, along with \smallsum, are of class mathop, unlike their Greek letter equivalents.

• (New as of version 1.5.) Two macros allow you to change fontdimen values in math mode: \setSYdimens and \setEXdimens, which allow you to change the fontdimen parameters for the symbol and extension fonts respectively. They may be used only in your preamble. Their arguments can be any valid \TeX commands to change fontdimen values. For example:
Don’t use these unless you know what you’re doing.

- **varg** causes the math italic letters g, v, w, y to be replaced by versions which are more distinctive—eg, useful for distinguishing math italic v from ν;

- **varvw** causes the math italic letters v, w to be replaced by versions which are more distinctive—eg, useful for distinguishing math italic v from ν;

- **libertine** loads different versions of math italic and bold math italic based on Libertine rather than Times—the **varg** and **varvw** options are disabled in this case, as the equivalent variant forms are made available by default;

- (new in version 1.55) **stix2** loads different versions of math italic and bold math italic based on StixTwoMath rather than Times—the **varg** and **varvw** options are disabled in this case. See the documentation to the SticksToo package, which contains more details and some math samples.

- (new in version 1.60) **ebgaramond** loads different versions of math italic and bold math italic based on EGBaramond rather than Times—the **varg** and **varvw** options are disabled in this case. See the end of Appendix 2 for an example of a preamble.

- (new in version 1.62) **nc, ncf** load different versions of math italic and bold math italic based on ScholaX (New Century Schoolbook) rather than Times—the **varg** and **varvw** options are disabled in this case. The difference is that option **nc** loads math Greek letters from newtxmath, while option **ncf** loads math greek from an adaptation of fourier Greek.

- **minion** loads different versions of math italic and bold math italic based on MinionPro rather than Times—the **varg** and **varvw** options are disabled in this case, as the equivalent variant forms are made available by default—see the extended discussion below;

- **garamondx** loads different versions of math italic and bold math italic based on garamondx rather than Times—the **varg** and **varvw** options are disabled in this case, as the equivalent variant forms are made available by default.

- **baskervaldx** (or **Baskervaldx**) loads different versions of math italic and bold math italic based on Baskervaldx rather than Times—the **varg** and **varvw** options are disabled in this case, as the equivalent variant forms are made available by default.

- **baskerville** (or **Baskerville**, or **baskervillef** or **BaskervilleF**) loads different versions of math italic and bold math italic based on BaskervilleF rather than Times—the **varg** and **varvw** options are disabled in this case, as the equivalent variant forms are made available by default.

- **charter** (or **xcharter**) loads different versions of math italic and bold math italic based on XCharter rather than Times—the **varg** and **varvw** options are disabled in this case, as the equivalent variant forms are made available by default. As of version 1.53, Greek letters in all styles are taken from new alphabets constructed to match the Charter style.

- **alty** is new as of version 1.611, and applies only when math mode uses Charter alphabets. It causes math italic y to be rendered using a rounder shape that is less problematic than the default shape because it lacks the long tail of the XCharter Italic y.

- **noxchvw** (or **noXchvw**) is new as of version 1.54, and applies only when math mode uses Charter alphabets. It causes math italic v and w to be rendered using Charter italic glyphs. Use this only if you don’t care if math italic v is hard to distinguish from Greek ν.

6
• **cochineal** loads different versions of math italic and bold math italic based on **cochineal** rather than **Times**—the **varg** and **varvw** options are disabled in this case. There are two additional options specific to **cochineal**.

 - Option **cochf** replaces the default short math italic f with the long italic f used in text.
 - Option **cochrho** replaces the default short form of \rho with the the long form used in text.

• **utopia** (or **heuristica** or **erewhon**) loads different versions of math italic and bold math italic based on **Utopia** rather than **Times**—the **varg** and **varvw** options are disabled in this case, as the equivalent variant forms are made available by default. The **Heuristica** or **Erewhon** font package must be installed to use this option. (Erewhon is based on **Heuristica**, but is 6% smaller and has more complete figures styles and small cap styles, as well as a variety of smaller figures—superior, inferior, numerator, denominator.) For example:

\begin{verbatim}
\usepackage[osf]{erewhon} %extension of Utopia
\usepackage[vargu,varl]{inconsolata} % sans typewriter
\usepackage[scaled=.95]{cabin} % sans serif
\usepackage[utopia,vvarbb]{newtxmath}
\end{verbatim}

• the **libertine** option also replaces both slanted and upright Greek symbols by the corresponding Libertine glyphs, and similarly for **minion**, **garamondx**, **ebgaramond**, **stix2**, **xcharter** and **cochineal**;

• **cmintegrals** instructs **newtxmath** to load a thicker version of the Computer Modern integral in place of the **newtxmath** default—the **txfonts** integral (identical to the integral in the Wolfram fonts), which is not to everyone’s taste—a consequence is that none of the special forms of **txfonts** integrals are available; **as of version 1.5, this option does nothing, as the new default is slanted integrals.**

• the combination

\begin{verbatim}
% The next line is no longer needed, as newtxmath Requires it
%\usepackage{amsmath}\% loads amstext, amsbsy, amssopn but not amssymb
\usepackage{newtxmath}
\end{verbatim}

causes no error, unlike the same combination with **txfonts**, but does nothing significant. (Recall that **amsmath** is loaded automatically if you use an **AMS** document class such as **amsart** or **amsbook**, as is **amsthm**.)

• If you wish to use **\usepackage{amsthm}**, place it before loading **newtxmath** or the result will be

! LaTeX Error: Command \openbox already defined.

• **uprightGreek** and **slantedGreek** determine the form of Greek alphabet loaded—the default is **uprightGreek**, which loads upright uppercase and slanted lowercase Greek symbols, as is customary in Anglo-American mathematical typesetting. With the option **slantedGreek**, which you might want to use if you cared about ISO standards, all Greek symbols are slanted. No matter which is set, \texttt{\textbackslash Gammaup} (or \texttt{\textbackslash upGamma}) gives you upright \Gamma, etc, and \texttt{\textbackslash Deltait}, \texttt{\textbackslash zetait} give you italic (i.e., slanted) versions of those letters. If you are using a text font family with properly constructed OT1-encoded versions, then, no matter what you chose as the default shape for upper case Greek letters, \texttt{\mathnormal{\textbackslash Omega}} etc will always produce the slanted version. (The macro \texttt{\mathnormal} means essentially “use the version of the symbol in letters”—i.e., the math italic form. This did not always work as expected in versions prior to 1.45.) Currently, this works as expected with **newtxtext** and **libertine**.
• Option `frenchmath` sets the default style in math mode for rendering uppercase Roman and Greek letters to upright, and lowercase Greek letters to upright. (Introduced in v. 1.28.)

• The option `cmbraces` instructs `newtxmath` to ignore the brace collections from `txfonts`, substituting a collection based on thickened versions of the Computer Modern braces, which I find much easier to distinguish from other delimiters. This works quite well in regular weight but looks a bit clunky in bold. The option `bigdelims`, which superseded `cmbraces`, is now not necessary—it is the default as of version 1.5.

• Option `nonewtxmathopt` (or `scale`, a mistake I cannot now erase) causes `newtxmath` to not make use of the optical math sizes (7pt, 5pt), as preferred by some.

• Option `subscriptcorrection` enables the special spacing of some subscripts. (The default is `nosubscriptcorrection`.)

• The `newtxmath` package contains three different Blackboard Bold alphabets, where original `txfonts` contained two. The default, triggered by \texttt{\textbackslash mathbb{}}, takes its glyphs from the font which replaces `msbm` and has the same overall appearance of a hollowed-out text font, which I find neither bold nor blackboard-like. The second option, taken from `txfonts`, is triggered by \texttt{\textbackslash varmathbb{}}, is more geometric and, in my opinion, preferable but not optimal. The option `varbb` makes \texttt{\textbackslash mathbb{}} synonymous with \texttt{\textbackslash varmathbb{}}. The third option is the double-struck glyphs from the STIX collection. See the expanded discussion below.

• `nosymbolsc` causes the package to not load the `symbolsC` fonts, saving a math family. (This font contains mostly exotic symbols, along with some very useful, commonly used symbols like \texttt{\textbackslash colon equal}, \texttt{\textbackslash eqcolon}, \texttt{\textbackslash notin}, \texttt{\textbackslash notni}, \texttt{\textbackslash neq}, \texttt{\textbackslash notsubset}, \texttt{\textbackslash notsupset}, but these have been moved (virtually) to lettersA so they may continue to be used even if you use the option `nosymbolsc`.) If this option is selected, then, as of version 1.53, new definitions are made for the missing negated symbols. The package centernot is now required.

• `amssymbols` (the default) and `noamssymbols` determine whether the `txfonts` versions of the AMS symbols (AMSm) are loaded—if so, they override previous settings in `amsmath`. If you use the option `noamssymbols`, then \texttt{\textbackslash mathbb{}} is set to mean the same as \texttt{\textbackslash varmathbb{}}. (One advantage of `noamssymbols` is that you save two of your precious math families for other purposes, such as setting a couple of external math alphabets by means of the `mathalfa` package.) **Important note:** if you load an AMS class, like `amsart`, then some trickery will be involved. The AMS classes have an option, `noamsfonts` which currently (2017) does not work as advertised, but is fixed in `texlive 2018`. It is supposed to prevent the loading of `AMSa` and `AMSB`, which waste two slots. The following workaround seems like a reasonable stopgap until then.

\begin{verbatim}
def\symAMSb{5}
documentclass[noamsfonts]{amsart} %or other AMS classes \let\symAMSb\undefined
\end{verbatim}

This method of loading the AMS class will save you two slots.

• `libaltvw` has effect only if the libertine option is selected—in this case, it substitutes for math italic v and w hand-crafted versions based on the Libertine upsilon glyphs.

• `bigdelims` loads a different math extension font and redefines most of the small and big math delimiters to have larger sizes so that, for example, there is more of a distinction between (and \texttt{\textbackslash big{}} in math mode. If this option is specified, `cmbraces` is ignored. (This option is unnecessary, as of version 1.5.)
• Liby has an effect only if the libertine option is selected—with this option, the math italic y is chosen to be Libertine’s italic y instead of the default one from txfonts.

• As of version 1.18 of newtxmath (and version 1.07 of newpxmath) there are new math accents and macros available.

 – \widehat and \widetilde have been extended from 3 to 6 sizes, and the smallest is now not as wide as in previous versions. In particular, you can now use, eg, \widehat{X}^2, which gives \hat{X}^2 without the hat colliding with the superscript.

 – The math double bracket delimiters have been moved to another family so their use is less likely to cause a “too many math families” error. The ordinary sizes now have their own macros, \dlb and \drb, giving, eg, $[0, T]$, as commonly used in probability theory.

 – The new macros \overgroup, \undergroup, \overgroupra, \undergroupra and \undergrouppla are intended as replacements for the \wideparen and related macros from the yhmath and fourier packages. In fact, \overgroup and \undergroup are variants of the existing macros \overbracket and \underbracket, while the suffixes ra and la signify right arrow and left arrow respectively. The macro \widering places a ring centered over an \overgroup, not dissimilar from its use in yhmath. Example:

\begin{verbatim}
\overgroup{ABC}\quad\overgroupra{ABC}\quad\undergroup{ABC}\quad\undergroupla{ABC}\quad\widering{ABCD}
\end{verbatim}
gives

\begin{equation*}
\overline{ABC} \quad \overline{ABC} \quad \overline{ABC} \quad \overline{ABC} \quad \overline{ABCD}
\end{equation*}

• As of version 1.23, the package contains new math accents \widearc and \wideOarc similar in effect to those from fourier and kpfonts. Example:

\begin{verbatim}
\widearc{BC}\quad\widearc{ABC}\quad\widearc{ABCD}\quad\wideOarc{BC}\quad\wideOarc{ABC}\quad\wideOarc{ABCD}
\end{verbatim}
gives

\begin{equation*}
\overline{BC} \quad \overline{ABC} \quad \overline{ABCD} \quad \overline{BC} \quad \overline{ABC} \quad \overline{ABCD}
\end{equation*}

• The option timesmathacc changes the default selection of math accents from the Roman text font, forcing the use of the heavier Times accents. (Libertine has much lighter accents which can seem to almost disappear under some conditions.) If your language uses accented operator names, do not use this option.

4.1 Bold Math Italic macros

It can be a little awkward to specify bold math italic letters without using the bm package, which may have some unintended consequences for some users. The option useBImacros enables the definitions of macros of the form \BIA—\BIZ that may be used instead, all based on the macro

\begin{verbatim}
\DeclareRobustCommand{\BI@}[1]{%
 \begingroup\text{\mathversion{bold}$#1$}\endgroup}
\end{verbatim}

following which, the package conditionally defines, e.g.,
DeclareRobustCommand{\BIA}{\BI@{A}}

so that \BIA works as expected in all math styles (display, text, script, scriptscript). These macros may be copied with minor changes so that other alphabets may be specified similarly.

IMPORTANT: The Libertine text package is now once again named libertine, but requires arguments that are different from the original libertine package.

Example 1:
\usepackage[osf]{newtxtext} % T1, lining figures in math, osf in text
\usepackage{textcomp} % required for special glyphs
%\usepackage{amsmath} % not needed, as it is Required by newtxmath
\usepackage[varv, vvarbb]{newtxmath}
\usepackage{bm} % load after all math to give access to bold math
%\useosf %no longer required if osf specified

Example 2:
\usepackage[lining, semibold]{libertine} % a bit lighter than Times--no osf in math
\usepackage[T1]{fontenc} % best for Western European languages
\usepackage{textcomp} % required to get special symbols
\usepackage[varqu, varl]{inconsolata} % a typewriter font must be defined
\usepackage[amsmath, amsthm]{newtxmath}
\usepackage[scr=rsfso]{mathalfa}
\usepackage[osf]{cabin}
%After loading math package, switch to osf in text.
\useosf % for osf in normal text

Caution: If your text font lacks an OT1 encoded version with uppercase Greek, \mathrm and \mathit applied to Greek letters won't give you what you expect.

5 Usage with Lua\LaTeX{} and Xe\LaTeX

As far as I can tell, newtxmath works with both, but requires a very specific loading order and choice of options. Briefly, except for libertine text, the math options must all be loaded prior to loading and using fontspec. Be aware that some text packages (eg, cabin) may contain a line like
\RequirePackage{fontspec}

which would prevent ("option clash" error) a subsequent
\usepackage[no-math]{fontspec}

unless suppressed by an appropriate option. E.g.,
\usepackage[type1]{cabin}

prevents the problem with the cabin package.

The following examples illustrate some general models, the most unintuitive being the first because it loads a small version, minlibertine, of libertine text for use in math mode as numbers, basic symbols and operators.
Example 3:

%load text components other than libertine text to be used in math
\usepackage[T1]{fontenc}
\usepackage[scaled=.85]{beramono}% used only by \mathtt
\usepackage[type1]{cabin}% used only by \mathsf
\usepackage[amsmath,amsthm]% must be loaded before newtxmath
\usepackage[libertine]{newtxmath}
% loads minlibertine because no other Roman text package was specified
% so that \mathrm and \mathbf also use minlibertine
\usepackage[scr=rsfso]{mathalfa}
%Now load the otf text fonts using fontspec---won't affect math
\usepackage[no-math]{fontspec} % process with XeLaTeX or LuaLaTeX
\usepackage{libertine}
%\usepackage[osf,semibold]{libertine} for osf in text, semibold as bold

The next example is similar, but in math mode, numbers, basic symbols, operator names, \mathrm and \mathbf will render with fbb-LF, though math italic and math Greek letters will be from libertine. (Note that one specifies the encoding and redefines \rmdefault. For reasons I don't yet understand, it may not work to load the font package---ie, don't substitute \usepackage{fbb}, as that will mess up bold in the libertine text package.)

Example 4:

%load text components other than libertine text to be used in math
\usepackage[T1]{fontenc}
\renewcommand{\rmdefault}{fbb-LF}% Roman font for use in math mode
\usepackage[scaled=.85]{beramono}% used only by \mathtt
\usepackage[type1]{cabin}% used only by \mathsf
\usepackage[amsmath,amsthm]% load before newtxmath
\usepackage[libertine,vvarbb]{newtxmath}
% does not load minlibertine because another Roman text package was specified
\usepackage[scr=rsfso]{mathalfa}
%\usepackage[no-math]{fontspec} % process with XeLaTeX or LuaLaTeX
\usepackage[libertine]{newtxmath}
%\usepackage[osf,semibold]{libertine} for osf in text, semibold as bold

6 Alternate forms of glyphs

Prior to version 1.5, several math glyphs had alternate forms:

<table>
<thead>
<tr>
<th>Command</th>
<th>Result</th>
<th>Alternate Commands</th>
<th>Alternate Forms</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>∅</td>
<td>\varnothing, \emptysetAlt</td>
<td>∅, ∅</td>
</tr>
<tr>
<td>\forall</td>
<td>∀</td>
<td>\forallAlt</td>
<td>∀</td>
</tr>
<tr>
<td>\exists</td>
<td>∃</td>
<td>\existsAlt</td>
<td>∃</td>
</tr>
<tr>
<td>\nexists</td>
<td>∅</td>
<td>\nexistsAlt</td>
<td>∅</td>
</tr>
</tbody>
</table>

To use an alternate form throughout your document without changing all occurrences of the usual command,
insert something like the following in your preamble after loading newtxmath:
\let\forall\forallAlt

As of version 1.5, the old txfonts versions of \forall, \exists and \nexists have been removed and the Alt versions substituted. Both \forall and \forallAlt generate ∀, and similarly with \exists and \nexists.

7 Conformity with amsmath

The newtxmath package now contains a \RequirePackage{amsmath}, as it uses a number of the macros defined there. To pass options to amsmath, you can pass the options as options to \documentclass. For example,
\documentclass[11pt,intlimits]{article}
usepackage{newtxtext}
usepackage{newtxmath}

will load amsmath with option intlimits. As of version 1.14, newtxmath respects the amsmath macros for placement of limits on integrals.

8 The minion option

This option allows the use of MinionPro as math letters (Latin and Greek) within the math font, but there are some caveats:

• you must use a recent version of MinionPro, such as the version that comes with recent versions of Adobe Reader. In addition, the fonts must installed under special names so they can be recognized by the support files—this is spelled out in the documentation for the minion2newtx package that must be downloaded from CTAN.tug.org and installed separately.

9 The \TeX math font problem

Math font packages in \LaTeX are susceptible to the “Too many math alphabets” error, due to exceeding the limit of just sixteen math font families, or mathgroups, as they are called in \LaTeX. Put in oversimplified terms that do however correctly represent how this all works in newtxmath, the following math fonts are always loaded and permanently (if you didn’t prevent loading of some features) occupying slots immediately following \begin{document}, and others that may be called for in typesetting a mathematical expression can add to the list as the document grows.

Always loaded:

0: operators
1: letters
2: symbols
3: largesymbols
4: AMSm (a combination of the old AMSa and AMSb)
5: lettersA
6: symbolsC
7: largesymbolsTXA
10 Bold math fonts

Every math font in the txfonts package, and in the newtx package, is accompanied by a bold version. Some usage examples are given below. Generally, one may use either \boldmath to change an entire formula to bold, or \boldsymbol to change one symbol, but the spacing generally works better after loading the bm package and using the \bm macro.

The text glyphs dotlessi (\i) and dotlessj (\j) are rarely needed in actual text—in many fonts, roman dotlessi is very similar to the numeral 1. They are however sometimes needed to build special math glyphs. The following table shows how to generate the mathematical forms of dotlessi and dotlessj. I illustrate with only dotlessi—dotlessj is entirely analogous.
In math, bold roman characters are often used to indicate vector quantities, and for this one uses constructions like

- \$\mathbf{x}\$ produces \textbf{x};
- \$\bm{\mathbf{x}}\$ produces \textbf{x} (same as previous but may offer improved spacing);
- \$\bm{x}\$ produces \textbf{x} (not roman);
- \$\bm{\hat{\mathbf{x}}}\$ produces \textbf{\hat{x}} (with a bold accent);
- \$\bm{\dot{x}}\$ produces \textbf{\dot{x}} (bold but not roman);
- the macro definition

\newcommand{\xyvec}{%\ensuremath{\#1\mkern1.5mu\bm{\textbf{\i}}#2\mkern1.5mu\bm{\textbf{\j}}}}

allows you to write \xyvec{x}{+y} to output \textbf{x} + \textbf{y};
- \$\bm{\Gamma}\$ produces \textbf{\Gamma} (bold Gamma);
- \$\bm{\hat{\Gamma}}\$ produces \textbf{\hat{\Gamma}} (bold Gamma with bold accent).

(The last two assume that you have effectively set the option \texttt{uprightGreek}—the default.)

11 Blackboard bold

As mentioned briefly above, the package now has a new blackboard bold alphabet built-in, and some new macros to call the non-default versions. To summarize, the problems are:

- the default, called by \texttt{\mathbb} is quite ugly and indistinct, but does cooperate with the bolding macros \texttt{\bm} and \texttt{\boldsymbol};
- the original variant form called with the macro \texttt{\varmathbb} is better, but the macro conflicts with \texttt{\bm}. (In fact, the bold version is identical to the regular version, but it is still not right that it conflicts with them.) The problem stems from the part of the definition of \texttt{\varmathbb} which allows you to insert an argument with more than one character, like \texttt{\varmathbb{ABC}}. Another problem with \texttt{\varmathbb} is that it conflicts with \texttt{\hyperref}—if you use the macro in a moveable argument such as a section heading, you will provoke a \texttt{LaTeX} error message. The solution is to use macros that take a single character as argument, like \texttt{\vmathbb{A}} and \texttt{\vvmathbb{A}}, which both cooperate with \texttt{\hyperref}.
- the third, new, alphabet is borrowed from the STIX fonts—it is sharp and quite clear, geometric in design. The macro \texttt{\vvmathbb} provided to access this alphabet. The new option \texttt{vvarbb} effectively makes \texttt{\mathbb} mean the same as \texttt{\vvmathbb}. (The reason for including these in the \texttt{newtx} package rather than calling them from the \texttt{mathalfa} package is that \texttt{newtx} leaves very little space for new math symbol fonts and math alphabets, and this way requires no additional such resources.
• **Important note:** Under the option stix2, there are still three blackboard fonts but the macro \texttt{\textbackslash vmathbb} now points to glyphs from DSSerif, a serifed double-stuck family that replaces the original variant that is still available under other options. With stix2, the dotlessi and dotlessj glyphs from the DSSerif font are available as \\imathbbs and \\jmathbbs, no matter which blackboard bold option you chose.

One interesting feature of the new alphabet is that it contains blackboard bold numbers, of which 0 and 1 will likely be the most useful, perhaps as operator names. I find $\mathbb{1}$ useful in specifying an indicator, AKA characteristic function. Here are some examples:

<table>
<thead>
<tr>
<th></th>
<th>Regular</th>
<th>Bold</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>\mathbb{R}</td>
<td>$\bm{\mathbb{R}}$</td>
<td>Bold is same as regular</td>
</tr>
<tr>
<td>Variant 1</td>
<td>\varmathbb{R}</td>
<td>\mathbb{R}</td>
<td>Single char. argument</td>
</tr>
<tr>
<td>...or</td>
<td>\vmathbb{R}</td>
<td>\mathbb{R}</td>
<td>Make a macro for this!</td>
</tr>
<tr>
<td>Variant 2</td>
<td>\vvmathbb{R}</td>
<td>\mathbb{R}</td>
<td></td>
</tr>
</tbody>
</table>

The macros \texttt{\textbackslash vmathbb} and \texttt{\textbackslash vmathbb} have been substantially rewritten as of version 1.55 and can now accept strings as arguments rather than just single characters. At some point in time, the \texttt{\textbackslash bm} and \texttt{\textbackslash boldsymbol} macros stopped working with the prior versions of these macros, and that remains a problem with the new versions. If you need only a few blackboard bold symbols, it may be better practice to define macros for each, including bold versions you might need. E.g., the your preamble:

```
\let\bbZ\undefined
\DeclareMathSymbol{\bbZ}{\mathord}{lettersA}{218} $ Z may not always be in this location
```

Then, \texttt{\textbackslash bm} will correctly understand

```
\bbZ; \bm{\bbZ}
```

and render it as

```
\bbZ \bbZ
```

12 Samples from free Times and Libertine packages

TXFONTS:

```
\usepackage{txfonts}
```
A formula from the \LaTeX Companion, 2nd Edition, p.390:

\[t[u_1, \ldots, u_n] = \sum_{k=1}^{n} \binom{n-1}{k-1} (1-t)^{n-k} t^{k-1} u_k. \]

The ISO would prefer that a formula like

\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt \]

be typeset instead as

\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt, \]

with upright \(\pi \), \(e \) and \(d \). I dislike the look of \(dt \) when the slope of \(t \) is too great.

- Complete match between text and math size and weight;
- first formula much too cramped;
- upper limit of integral much too close to integral sign;
- square on \(t \) in integrand comes very close to colliding with it;
- square root in denominator aligned too far right.

NEWTXFONTS:

\usepackage{newtxtext}
\usepackage{newtxmath}

A formula from the \LaTeX Companion, 2nd Edition, p.390:

\[t[u_1, \ldots, u_n] = \sum_{k=1}^{n} \binom{n-1}{k-1} (1-t)^{n-k} t^{k-1} u_k. \]

The ISO would prefer that a formula like

\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt \]

be typeset instead as

\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt, \]

with upright \(\pi \), \(e \) and \(d \). I dislike the look of \(dt \) when the slope of \(t \) is too great.

- Complete match between text and math size and weight;
- first formula much less cramped;
- upper limit of integral not too close to integral sign;
- square not too close to \(t \) in exponent;
- better alignment of square root in denominator.
MathTimePro2:

\usepackage{newtxtext}\usepackage[lite]{mtpro2}

A formula from the \LaTeX Companion, 2nd Edition, p.390:
\[t[u_1, \ldots, u_n] = \sum_{k=1}^{n} \binom{n-1}{k-1} (1-t)^{n-k} t^{k-1} u_k. \]

The ISO would prefer that a formula like
\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt \]
be typeset instead as
\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt, \]
with upright π, e and d. I dislike the look of dt when the slope of t is too great.

- Complete match between text and math size and weight;
- first formula quite spread out;
- upper limit of integral not too close to integral sign;
- plenty of space between square and t in exponent.

Libertine and MathTimePro2:

\usepackage{libertine}\usepackage[T1]{fontenc}\usepackage[lite]{mtpro2}

A formula from the \LaTeX Companion, 2nd Edition, p.390:
\[t[u_1, \ldots, u_n] = \sum_{k=1}^{n} \binom{n-1}{k-1} (1-t)^{n-k} t^{k-1} u_k. \]

The ISO would prefer that a formula like
\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt \]
be typeset instead as
\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt, \]
with upright π, e and d. I dislike the look of dt when the slope of t is too great.

- Mismatch of weight between text and math;
• first formula quite spread out;
• upper limit of integral not too close to integral sign;
• plenty of space between square and t in exponent.

Libertine and newtxmath:

\usepackage{libertine}
\usepackage[T1]{fontenc}
\usepackage[libertine]{newtxmath}

A formula from the L\TeX Companion, 2nd Edition, p.390:

$t[u_1, \ldots, u_n] = \sum_{k=1}^{n} \binom{n-1}{k-1} (1 - t)^{n-k} t^{k-1} u_k$.

The ISO would prefer that a formula like

$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt$

be typeset instead as

$\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt$,

with upright π, e and d. I dislike the look of dt when the slope of t is too great.

• Very good match between text and math in size and weight;
• first formula not cramped;
• upper limit of integral not too close to integral sign;
• space between square and t in exponent;
• better alignment of square root in denominator.

Mathptmx:

\usepackage{mathptmx}
A formula from the LaTeX Companion, 2nd Edition, p.390:

\[t[u_1, \ldots, u_n] = \sum_{k=1}^{n} \binom{n-1}{k-1} (1-t)^{n-k} t^{k-1} u_k. \]

The ISO would prefer that a formula like

\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt \]

be typeset instead as

\[\Phi(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} e^{-t^2/2} dt, \]

with upright \(\pi, e \) and \(d \). I dislike the look of \(dt \) when the slope of \(t \) is too great.

- Good match between text and math size and weight, though the summation symbol (from the system symbol font) is too small and too dark;
- first formula well spread;
- upper limit of integral not too close to integral sign;
- space between square and \(t \) in exponent;
- there are no upright Greek lowercase letters in this package;
- good alignment of square root in denominator;
- infinity symbol not sufficiently large?
- the package lacks a number of amenities that are present in other packages.

13 Items installed

As well as a collection of PostScript fonts, virtual fonts, font definition files and the central `newtxtext.sty` and `newtxmath.sty` files, the package contains one map file `newtx.map` that must be enabled for the package to function correctly. Its name was changed from `ntx.map` to mirror the package name.) The file `implementation.pdf` in this distribution provides a manifest of all files installed together with a brief indication of the sources. (This file is somewhat outdated. The file `mathnotes.pdf` adds details about the sources for the math fonts, though it is rather cursory.)

The font files `ntxexmods.pfb` and `ntxexbexmods.pfb` were derived from `cmex10.pfb` by FontForge, thickening the Computer Modern braces to match the weight of the `txfonts` braces. The pair `ntxexb.pfb` and `ntxexbexb.pfb` were similarly derived from `cmsgy7.pfb` and `cmex10.pfb` to produce more braces and matching integral signs based on Computer Modern. The `.tfm` files `rtx[xb]mio.tfm` are simply unslanted versions of `rtxmi`, from which we construct upright partial derivative symbols. The last two entries provide us with a way to access custom-encoded versions of `fxlri.pfb` and `fxlbi.map` in order to access some of the unencoded alternate characters—eg, Greek letters, \(J.alt \) and \(v.alt \). The font file `LibertineTheta-Regular.pfb` was created from the Theta symbol in `fxlri.pfb`, which requires some FontForge help to look correct.

This version contains optical versions of the math italic and symbol fonts at 7pt and 5pt, allowing better rendering in `\scriptstyle` and `\scriptscriptstyle`.

19
14 Appendix 1: Changes made in version 1.5

- The large delimiters have been modified so match the heights in common usage by \texttt{cmex10} and other packages. (Those formerly used by \texttt{newtxmath} were somewhat shorter, resulting in unexpected behavior of \texttt{\Big}, \texttt{\bigg}, etc.)

- The integrals used in previous versions have been discarded and replaced by an upright and a slanted form, the latter being the default. The option \texttt{upint} switches to the upright form. (The former option \texttt{cmintegrals} now has no effect.) Integrals are of three types: small, textstyle and displaystyle. Each size is available in twelve variants. Assuming slanted (the default) is selected, there are 36 regular-weight forms:

<table>
<thead>
<tr>
<th>Small</th>
<th>Text, Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>\smallint</td>
</tr>
<tr>
<td>\int</td>
<td>\smallint</td>
</tr>
<tr>
<td>\iint</td>
<td>\smalliint</td>
</tr>
<tr>
<td>\iiint</td>
<td>\smalliiint</td>
</tr>
<tr>
<td>\iiiint</td>
<td>\smalliiiint</td>
</tr>
<tr>
<td>\oint</td>
<td>\smalloint</td>
</tr>
<tr>
<td>\ooint</td>
<td>\smallooint</td>
</tr>
<tr>
<td>\oiint</td>
<td>\smalloiint</td>
</tr>
<tr>
<td>\oiiint</td>
<td>\smalloiiint</td>
</tr>
<tr>
<td>\fint</td>
<td>\smallfint</td>
</tr>
<tr>
<td>\sqint</td>
<td>\smallsqint</td>
</tr>
<tr>
<td>\sumint</td>
<td>\smallsumint</td>
</tr>
<tr>
<td>\varointclockwise</td>
<td>\smallvarointclockwise</td>
</tr>
<tr>
<td>\oointctrclockwise</td>
<td>\smalloointctrclockwise</td>
</tr>
</tbody>
</table>
\prod
\bigcup
\bigcap
\biguplus
\bigwedge
\bigvee
\bigcupdot
\bigcapplus
\bigsqcupplus
\bigsqcapplus
\bigtimes
\coprod

- The dot accents are now taken from a slightly larger series, making available \dot, \ddot, \dddot and \ddddot. For best horizontal alignment with other accents, choose the option timesmathacc when loading newtxmath.

- New accents have been added and the old vector accent has been replaced. The new accents are:
 \vec
 \lvec
 \lrvec
 \harpoonacc
 \lharpoonacc
 \lrharpoonacc
 \barbar
 \bartilde
 \barhat
 \tildetilde
 \tildetilde
 \hatbar
 \hattilde
 \hattilde

- New glyphs: (B denotes bigger, S denotes smaller)
 \cdotB
 \cdotBB
 \circS
 \bulletS
 \bulletSS
 \bulletSSS
 \primeS

- New macros \setSYdimens and \setEXdimens allow experts to modify some math font dimensions.
Appendix 2: Changes made in version 1.60

Versions of newtx dated from September, 2019 (1.60 for newtxmath make some quite substantial changes, mostly to math mode.

Goals

Spurred by work of Ross Moore to provide means of generating archivable pdf using pdflatex, the main goal was to change newtx and newpx to meet the requirements for satisfying the PDF/A-1b standards by using an appropriate preamble involving the pdfx package and other unicode mapping files. Making these changes gave me the opportunity to organize the source files to make them more manageable in future revisions.

A further goal whose time seemed ripe was to rework the spacing of math letters, both Roman and Greek, so they behaved better in superscripts and subscripts. This did not turn out to be so easy. The problem is illustrated by math italic j. If you don’t give it enough extra space on the left, it will likely collide with the D in rendering D^j. On the other hand, if you do give it enough space on the left, it will look bad as a subscript, appearing too far right.

A final goal was to make better use of the remaining space in some of the math fonts by placing some math alphabets in them, avoiding perhaps a waste of those precious sixteen math families.

The important changes

The following changes were made to both newtx and newpx.

Archivability

Some of the individual font files from which the math fonts are built turned out to have some fairly minor structural issues. These have all been corrected. The more major issue was the lack of unicode mapping for all characters in the fonts. For the symbol and math extension fonts, this issue was largely solved by Ross Moore’s glyptounicode files that are now accessible as part of TeXLive and MiKTeX. The main problem was the math alphabets like math italic, bold math italic, upright Greek and slanted Greek, all of which have now been assigned their own unicode points. For all of these, I constructed new fonts using unicode names for the glyphs, then made fontinst scripts that renamed those unicode values to the original simple names as used in the encoding files so that I could use my old encoding and adjustment files. This exercise has now been carried out for newtxmath, newpxmath, newtxmath/libertine, newtxmath/cochineal, newtxmath/stix2, newtxmath/xcharter and newtxmath/erewhon. Each of these can now be considered to have an “enhanced” status that allows them to share all the new assets described below. The other packages which may be specified as an option to newtxmath (e.g., baskervaldx, baskervillef) must be considered for the moment to be “unenhanced” and able to share only some of the new assets. In particular, only the enhanced items can generate archivable pdf.

Also modified were the sups fonts in newtextext, where the main issue was unicode mapping. Superior number and some superior letters do have assigned unicode values, but in may cases a more creative approach was needed, and provided once again by Ross Moore. I rebuilt the superior font files using those unicode names, solving that particular problem.
Here is a sample preamble showing the elements you will need to specify to generate a PDF satisfying the PDF/A-1b standards, as verified by Adobe Acrobat Pro. (Other verification processes may yield different outcomes.)

\documentclass[noamsfonts]{amsart} % save 2 math families
\pdfcompresslevel=0
\pdfgentounicode=1
\input glyphtounicode.tex
\usepackage{pdfx} % v 1.6.4 or higher
\InputIfFileExists{glyphtounicode-cmr.tex}{}{}
\InputIfFileExists{glyphtounicode-ntx.tex}{}{}
\usepackage{newtxtext} %T1 is default encoding
\usepackage{inconsolata} % typewriter
%\usepackage[leqno]{amsmath}
\usepackage{amsthm}
\usepackage[vvarbb]{newtxmath} % vvarbb gives STIX Bbb
\usepackage{newtxmath} % vvarbb gives STIX Bbb

Version 1.6.3 of pdfx from February 2019 mishandles math accents. A fix is now available and will become part of the upcoming pdfx v1.6.4.

17.2 Glyph spacing changes

(For enhanced packages only) I reworked the math italics to improve the rendering of some superscripts. This affects (a) parentheses, brackets and braces to inhibit clashes; (b) glyphs like j, f, p, y, \rho, \beta and \mu where a long tail could pose problems intersecting with other glyphs; (c) glyphs like such as D, Q and \Phi that are round on the right, where interference is most likely to occur with a superscript. Increasing the left side-bearing of j, etc., helps with superscripts but creates an ugly gap when used as subscripts.

The subscript correction option to newtxmath has been corrected and enhanced so that it now offers a partial solution the subscript spacing problem. I regret that this option is incompatible with xy-pic, both depending on making _ an active character. Newtxmath will detect if the xy package is loaded and disable subscript correction if so. You would have to correct such issues by manually inserting a negative \mkern. For example, you might put in your preamble something like

\def\jj{\mkern-3mu j}

and then use x_{\jj} instead of x_j, turning x_j into x_j.

If you do enable subscript correction, there is a default correction table in the sty file, but the sty file also looks for a file named, e.g., newtx-subts.tex if you are using the newtx default math letters. There is already such a file located in the newtx distribution in the /tex/latex/ folder. If you wish to make changes to this file, copy the file to your home TeX folder where it will be found by TeX before the one in the distribution. The entries in the file are lines like

\{j\}{-3}

each of which will have the same effect as the above macro if the first item in the subscript is j. You can also specify Greek letters with lines like

\{\beta\}{-1.5}

The complete list of file names recognized for specifying subscript corrections is:
17.3 New glyphs added

(For enhanced packages only) Math family 1 (letters) has been extended from 128 slots to 256, retaining the OML encoding of the first 128. Most of additional slots have been allocated to a script font from the old STIX collection and an upright modification of that font. By default, \mathscr{F} will produce \mathcal{F}.

- option uprightscript changes the output to \mathfrak{F}.

In both cases, there are full upper-case and lower-case and dotlessi, dotlessj. To insert the latter, you can write either $\mathscr{\imath}$ or $\imath\mathcal{C}$, rendered as \imath in the slanted script case.

The secondary letters font (lettersA) and math family 2 (symbols) have been rearranged. The first of these continues to have a Fraktur alphabet, but it a modification of its original one, having wider vertical stems and a blacker appearance more in keeping with the weight Times. Dotlessi and dotlessj have been added and can be specified in math mode by \mathfrak{imath} and \mathfrak{jmath}—\mathfrak{imath} also works. There are in addition two subsidiary Bbb alphabets in lettersA, specified by the respective options vmathbb, vvmathbb, and there are corresponding dotlessi, dotlessj activated by $\mathfrak{imathbb}$, $\mathfrak{jmathbb}$, which always render as \imath, \jmath no matter the choice of which Blackboard Bold Alphabet. If you select one of the options varbb, vvarbb, you will have Bbb digits 0..9 using, e.g., $\mathbb{1}$ to get $\mathbb{1}$.

Among the new symbols added are:
- \hslash, \hbar, $\lambda\text{daslash}$, λdabar, \Zbar, Angstrom are now constructed from the native glyphs, but only in the enhanced families.
- Euler's constant \mathcal{E}.
- Hermitian transpose \hermtransp or \htransp is used like \mathbf{A}^\hermtransp or \mathbf{A}^\htransp. This usage is similar to simple transpose \mathbf{A}^\transp or \mathbf{A}^\top.
- Independence (in the probabilistic sense) can use \Perp, \QED, and there is a new \nPerp, \UED for the negation.

17.4 Adaptive vector accent

The \LaTeX macro \overrightarrow{XY} provides a right arrow with adaptive width, but not matching the vector head of newtxmath. Likewise, the esvect provides a similar service with a choice of vector heads, none of which match newtxmath. I've added code to provide a matching adaptive vector accent and which uses the same macro name, \vv, as esvect. For a comparison of these vector accents, \vec{XY} \vv{XY} \overrightarrow{XY}$ renders as
\vec{XY}

- \vec{AB} renders as \vec{AB}.
- \vec{AB}_x renders as \vec{AB}_x. This provides better horizontal spacing of subscripts than \vec{AB}_{x}.
- \vec{AB}_C.
- You can also do $\vec{AB}_{\vec{CD}}$, which renders as $\vec{AB}_{\vec{CD}}$.
- You can change the vertical space between the arrow and the accentee by means of the package option vecsep, whose default value is .25ex.

17.5 Miscellaneous Changes

- The superior letters fonts in newtx have been extended and all glyphs now have appropriate unicode mappings.
- The AMS fonts replacement, ntxsym corrects the former misplacement of \kbb, \daleth, \circledR and \circledS.)
18.1 Changed Font Tables

18.1.1 Letters

<table>
<thead>
<tr>
<th>(\text{o})</th>
<th>(\text{i})</th>
<th>(\text{̀})</th>
<th>(\text{̀́})</th>
<th>(\text{̀̀})</th>
<th>(\text{̀̄})</th>
<th>(\text{̀̄́})</th>
<th>(\text{̀̄̀})</th>
<th>(\text{̀̄̄})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
</tr>
<tr>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
</tr>
<tr>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
</tr>
<tr>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
</tr>
<tr>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
</tr>
<tr>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
</tr>
<tr>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
</tr>
<tr>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
<td>(\text{o})</td>
</tr>
</tbody>
</table>

26
18.2 letters

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>00x</td>
<td>Γ,</td>
<td>Δ</td>
<td>Θ,</td>
<td>Λ,</td>
<td>Ξ</td>
</tr>
<tr>
<td>01x</td>
<td>Φ</td>
<td>Ψ</td>
<td>Ω</td>
<td>α,</td>
<td>β,</td>
</tr>
<tr>
<td>02x</td>
<td>ζ</td>
<td>η</td>
<td>θ,</td>
<td>ϑ</td>
<td>ι,</td>
</tr>
<tr>
<td>03x</td>
<td>ξ</td>
<td>ο</td>
<td>π</td>
<td>ρ</td>
<td>ζ</td>
</tr>
<tr>
<td>04x</td>
<td>ρ</td>
<td>ω</td>
<td>κ</td>
<td>θ</td>
<td>ι</td>
</tr>
<tr>
<td>05x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>06x</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>07x</td>
<td>≈</td>
<td>≈</td>
<td>≈</td>
<td>≈</td>
<td>≈</td>
</tr>
<tr>
<td>08x</td>
<td>δ</td>
<td>ε</td>
<td>ζ</td>
<td>η</td>
<td>θ</td>
</tr>
<tr>
<td>09x</td>
<td>θ</td>
<td>η</td>
<td>θ</td>
<td>η</td>
<td>θ</td>
</tr>
<tr>
<td>10x</td>
<td>θ</td>
<td>η</td>
<td>θ</td>
<td>η</td>
<td>θ</td>
</tr>
<tr>
<td>11x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>12x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>13x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>14x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>15x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>16x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>17x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>18x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>19x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>20x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>21x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>22x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>23x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>24x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>25x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>26x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>27x</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
18.3 Symbols

<table>
<thead>
<tr>
<th></th>
<th>(\odot)</th>
<th>(\oplus)</th>
<th>(\otimes)</th>
<th>(\vartriangleleft)</th>
<th>(\vartriangleleft)</th>
<th>(\triangleright)</th>
<th>(\triangleright)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\odot)</td>
<td>(\ominus)</td>
<td>(\oplus)</td>
<td>(\otimes)</td>
<td>(\vartriangleleft)</td>
<td>(\vartriangleleft)</td>
<td>(\triangleright)</td>
<td>(\triangleright)</td>
</tr>
<tr>
<td>(\oplus)</td>
<td>(\ominus)</td>
<td>(\oplus)</td>
<td>(\otimes)</td>
<td>(\vartriangleleft)</td>
<td>(\vartriangleleft)</td>
<td>(\triangleright)</td>
<td>(\triangleright)</td>
</tr>
<tr>
<td>(\otimes)</td>
<td>(\ominus)</td>
<td>(\oplus)</td>
<td>(\otimes)</td>
<td>(\vartriangleleft)</td>
<td>(\vartriangleleft)</td>
<td>(\triangleright)</td>
<td>(\triangleright)</td>
</tr>
<tr>
<td>(\vartriangleleft)</td>
<td>(\ominus)</td>
<td>(\oplus)</td>
<td>(\otimes)</td>
<td>(\vartriangleleft)</td>
<td>(\vartriangleleft)</td>
<td>(\triangleright)</td>
<td>(\triangleright)</td>
</tr>
<tr>
<td>(\vartriangleleft)</td>
<td>(\ominus)</td>
<td>(\oplus)</td>
<td>(\otimes)</td>
<td>(\vartriangleleft)</td>
<td>(\vartriangleleft)</td>
<td>(\triangleright)</td>
<td>(\triangleright)</td>
</tr>
<tr>
<td>(\triangleright)</td>
<td>(\ominus)</td>
<td>(\oplus)</td>
<td>(\otimes)</td>
<td>(\vartriangleleft)</td>
<td>(\vartriangleleft)</td>
<td>(\triangleright)</td>
<td>(\triangleright)</td>
</tr>
<tr>
<td>(\triangleright)</td>
<td>(\ominus)</td>
<td>(\oplus)</td>
<td>(\otimes)</td>
<td>(\vartriangleleft)</td>
<td>(\vartriangleleft)</td>
<td>(\triangleright)</td>
<td>(\triangleright)</td>
</tr>
</tbody>
</table>
18.4 A sample newtx-subs.tex

You may either copy the entire block below, starting with the line \begin{...} and ending after the line beginning \end{ and pasting it into the top of your document before the \documentclass... line, which will allow for easy editing and will write the file to the same folder as your document, or make your own file, omitting those outer two lines.

\begin{filecontents*}{newtx-subs.tex}
{f}{-3}
{j}{-3}
{p}{-1}
{y}{-1}
{A}{-3}
{B}{-1}
{D}{-1}
{H}{-1}
{I}{-1}
{K}{-1}
{L}{-1}
{M}{-1}
{N}{-0.5}
{P}{-1}
{X}{-1}
{\rho}{-1.5}
{\mu}{-1}
\end{filecontents*}

The ebgaramond option to newtxmath

As ebgaramond has an x-height considerably smaller than newtx, some amount of scaling is useful to bridge the gap. In making the replacement letters, I increased the size of the EBGaramond letters by 5%, so make some scaling combination that compensates for this. The weights of ebgaramond used in the substitutions were regular and semibold. This dictates one of the options used for ebgaramond.

Example preamble:

\usepackage[lining,semibold,scaled=1.05]{ebgaramond}
% Latex BOLD renders with ebgaramond semibold
\usepackage[T1]{fontenc} % best for Western European languages
\usepackage{textcomp} % required to get special symbols
\usepackage[varqu, varl]{inconsolata}% a typewriter font must be defined
\usepackage{amsmath,amsthm}% must be loaded before newtxmath
\usepackage[ebgaramond, vvarbb, subscriptcorrection]{newtxmath} % STIX Bbb
\usepackage{bm}% load after all math to give access to bold math